app2(app2(twice, f), x) -> app2(f, app2(f, x))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(fmap, nil), x) -> nil
app2(app2(fmap, app2(app2(cons, f), t_f)), x) -> app2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))
↳ QTRS
↳ DependencyPairsProof
app2(app2(twice, f), x) -> app2(f, app2(f, x))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(fmap, nil), x) -> nil
app2(app2(fmap, app2(app2(cons, f), t_f)), x) -> app2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(f, x)
APP2(app2(twice, f), x) -> APP2(f, x)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(cons, app2(f, h)), app2(app2(map, f), t))
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(f, h)
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(fmap, t_f)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
APP2(app2(twice, f), x) -> APP2(f, app2(f, x))
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(app2(fmap, t_f), x)
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(cons, app2(f, x))
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(cons, app2(f, h))
app2(app2(twice, f), x) -> app2(f, app2(f, x))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(fmap, nil), x) -> nil
app2(app2(fmap, app2(app2(cons, f), t_f)), x) -> app2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(f, x)
APP2(app2(twice, f), x) -> APP2(f, x)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(cons, app2(f, h)), app2(app2(map, f), t))
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(f, h)
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(fmap, t_f)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
APP2(app2(twice, f), x) -> APP2(f, app2(f, x))
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(app2(fmap, t_f), x)
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(cons, app2(f, x))
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(cons, app2(f, h))
app2(app2(twice, f), x) -> app2(f, app2(f, x))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(fmap, nil), x) -> nil
app2(app2(fmap, app2(app2(cons, f), t_f)), x) -> app2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(f, x)
APP2(app2(twice, f), x) -> APP2(f, x)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(f, h)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
APP2(app2(twice, f), x) -> APP2(f, app2(f, x))
app2(app2(twice, f), x) -> app2(f, app2(f, x))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(fmap, nil), x) -> nil
app2(app2(fmap, app2(app2(cons, f), t_f)), x) -> app2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
APP2(app2(fmap, app2(app2(cons, f), t_f)), x) -> APP2(f, x)
APP2(app2(twice, f), x) -> APP2(f, x)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(f, h)
APP2(app2(twice, f), x) -> APP2(f, app2(f, x))
Used ordering: Polynomial interpretation [21]:
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
POL(APP2(x1, x2)) = 3·x1
POL(app2(x1, x2)) = 2 + 3·x1 + 3·x2
POL(cons) = 3
POL(fmap) = 3
POL(map) = 3
POL(nil) = 0
POL(t_f) = 3
POL(twice) = 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
app2(app2(twice, f), x) -> app2(f, app2(f, x))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(fmap, nil), x) -> nil
app2(app2(fmap, app2(app2(cons, f), t_f)), x) -> app2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
POL(APP2(x1, x2)) = 3·x2
POL(app2(x1, x2)) = 2 + 2·x2
POL(cons) = 2
POL(map) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
app2(app2(twice, f), x) -> app2(f, app2(f, x))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(fmap, nil), x) -> nil
app2(app2(fmap, app2(app2(cons, f), t_f)), x) -> app2(app2(cons, app2(f, x)), app2(app2(fmap, t_f), x))